Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids.
نویسندگان
چکیده
Symbiotic nitrogen fixation, the process whereby nitrogen-fixing bacteria enter into associations with plants, provides the major source of nitrogen for the biosphere. Nitrogenase, a bacterial enzyme, catalyzes the reduction of atmospheric dinitrogen to ammonium. In rhizobia-leguminous plant symbioses, the current model of nitrogen transfer from the symbiotic form of the bacteria, called a bacteroid, to the plant is that nitrogenase-generated ammonia diffuses across the bacteroid membrane and is assimilated into amino acids outside of the bacteroid. We purified soybean nodule bacteroids by a procedure that removed contaminating plant proteins and found that alanine was the major nitrogen-containing compound excreted. Bacteroids incubated in the presence of 15N2 excreted alanine highly enriched in 15N. The ammonium in these assays neither accumulated significantly nor was enriched in 15N. The results demonstrate that a transport mechanism rather than diffusion functions at this critical step of nitrogen transfer from the bacteroids to the plant host. Alanine may serve only as a transport species, but this would permit physiological separation of the transport of fixed nitrogen from other nitrogen metabolic functions commonly mediated through glutamate.
منابع مشابه
Increasing Nitrogen Fixation and Seed Development in Soybean Requires Complex Adjustments of Nodule Nitrogen Metabolism and Partitioning Processes
Legumes are able to access atmospheric di-nitrogen (N2) through a symbiotic relationship with rhizobia that reside within root nodules. In soybean, following N2 fixation by the bacteroids, ammonia is finally reduced in uninfected cells to allantoin and allantoic acid [1]. These ureides present the primary long-distance transport forms of nitrogen (N), and are exported from nodules via the xylem...
متن کاملProperties of the nitrogenase system in cell-free extracts of bacteroids from soybean root nodules.
The capacity of excised nodules from soybean plants to fix atmospheric N2 was demonstrated convincingly in 19521 by use of the sensitive '5N technique. Although the specific inhibitory effect of H2 on N2 fixation by nodulated red clover was discovered thirty years ago,2' 3 an understanding of the biochemistry of N2 fixation in symbionts has been delayed as a result of difficulties in obtaining ...
متن کاملThe Formation of Nitrogen-Fixing Bacteroids Is Delayed but Not Abolished in Soybean Infected by an [alpha]-Ketoglutarate Dehydrogenase-Deficient Mutant of Bradyrhizobium japonicum.
A mutant strain of Bradyrhizobium japonicum USDA 110 devoid of [alpha]-ketoglutarate dehydrogenase activity (LSG184) was used to test whether this tricarboxylic acid cycle enzyme is necessary to support nitrogen fixation during symbiosis with soybean (Glycine max). LSG184 formed nodules about 5 d later than the wild-type strain, and the nodules, although otherwise normal in structure, contained...
متن کاملIdentification of alanine dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroids.
N2-fixation by Rhizobium-legume symbionts is of major ecological and agricultural importance, responsible for producing a substantial fraction of the biosphere's nitrogen. On the basis of 15N-labelling studies, it had been generally accepted that ammonium is the sole secretion product of N2-fixation by the bacteroid and that the plant is responsible for assimilating it into amino acids. However...
متن کاملLegume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia.
The legume-rhizobium symbiosis is an ideal model for studying the factors that limit the evolution of microbial mutualists into parasites. Legumes are unable to consistently recognize parasitic rhizobia that, once established inside plant cells, use plant resources for their own reproduction rather than for N2 fixation. Evolution of parasitism in rhizobia, driven partly by competition among mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 20 شماره
صفحات -
تاریخ انتشار 1998